

Bayesian modelling of clause-level constructional knowledge for Korean-speaking preschool children

Gyu-Ho Shin (University of Hawai'i at Mānoa) & Seongmin Mun (Université Paris Ouest Nanterre La Défense)

BACKGROUND

Usage-based constructionist approaches

- · Language development as interactions between frequency and domain-general learning capacities (e.g., Goldberg, 2019; Tomasello, 2003)
- · Q: how do we appropriately represent developmental trajectories involving clusters of form-function pairings (i.e., constructions)?

Bayesian-inference-based simulation

- · Assumption: human learning involves one's updated beliefs based on previous experience
- · Studies focused mostly on English (e.g., Alishahi & Stevenson, 2008: Barak et al., 2016: Perfors et al., 2011)
- Q: to what extent are the implications of computational simulations generalisable across languages?

> Active transitives & suffixal passives in Korean

· Korean: SOV language with overt case-marking

· Clause-level constructions expressing a transitive event

		-	
Active transitive Canonical Scrambled	N-NOM N-ACC		V V
<u>Suffixal passive</u> Canonical Scrambled	N-NOM N-DAT	N-DAT N-NOM	V-PSV V-PSV
Ciwe NOM Minho-ACC ca 'Ciwe caught Minho.' Case marking omission	rs can be t (Sohn, 19 g omission p-ass-ta. tch-PST-SE p-ass-ta.	99)	if they are
 Form-function pairings in Asymmetric degree of ass 	<u> </u>		
NOM actor (in active) undergoer (in p	(DAT	 recipient (in active) actor (in passive)
Passive morphology	a mbalaai.		den evenler in

Given language-specific properties in Korean, how a Bayesian learner formulates knowledge RQ about active transitives and suffixal passives?

Abbreviation: ACC = accusative case marker; DAT = dative marker; N = noun; NOM = nominative case marker; PST = past tense marker; SE = sentence ender; V = verb

BAYESIAN SIMULATION

Input composition

· All constructional patterns expressing a transitive event found in caregiver input in CHILDES (MacWhinney, 2000)

u		
Туре	Example	Frequency (#)
Canonical active transitive	police-NOM thief-ACC catch	1,757
Scrambled active transitive	thief-ACC police-NOM catch	51
Canonical suffixal passive	thief-NOM police-DAT catch-psv	2
Scrambled suffixal passive	police-DAT thief-NOM catch-psv	1
Canonical active transitive, no ACC	police-NOM thief-ACC catch	268
Canonical active transitive, no NOM	police-NOM thief-ACC catch	19
Scrambled active transitive, no ACC	thief-AGG police-NOM catch	6
Scrambled active transitive, no NOM	thief-ACC police-NOM catch	0
Canonical suffixal passive, no DAT	thief-NOM police-DAT catch-psv	0
Canonical suffixal passive, no NOM	thief-NOM police-DAT catch-psv	0
Scrambled suffixal passive, no DAT	police-DAT thief-NOM catch-psv	0
Scrambled suffixal passive, no NOM	police-DAT thief-NOM catch-psv	0
Active transitive, actor-NOM only	police-NOM catch	935
Active transitive, undergoer-ACC only	thief-ACC catch	1,938
Ditransitive, recipient-DAT only	Lee-DAT send	234
Suffixal passive, undergoer-NOM only	thief-NOM catch-psv	407
Suffixal passive, actor-DAT only	police-DAT catch-psv	13
SU	5,631	

· Schematised pairings of morpho-syntactic and semantic-functional properties; indexing for canonicity

Example of input: canonical active transitive Morpho-syntactic layer N 1-i/ka 1 N 2-(I)ul 2 V 3 Semantic-functional laver Actor 1-NOM 1 Undergoer 2-ACC 2 Action 3 X N and V represent (probabilistically acquired) heuristics of noun and verb, respectively

Model training

- · Frequency of constructional patterns in caregiver input
- \rightarrow initial priors for learning
- · Learning algorithm (adapted from Alishahi & Stevenson, 2008)
- > A new input nCx is classified as an existing Best Construction (nCx) = argmax P(eCx | nCx) construction eCx, ranging over the indices of all the constructions in the model, with the maximum probability given nCx
- > Posterior probability is proportional to multiplication of conditional probabilities $P(eCx \mid nCx) \propto P(nCx \mid eCx) * P(eCx)$ associated with eCx and the prior of eCx
- Laplace smoothing to prevent the probability from converging upon zero
- · Two types of probability information
- · Constructional probability: probabilities of individual patterns
- · Transitional probability: conditional probabilities of constructional components within each pattern

Model performance

- Posterior probabilities of constructional patterns at every learning phase (one to 30)
- · as a proxy for the degree of clustering for these constructions

RESULTS & DISCUSSION

> By-pattern posterior probabilities

• Dominance of several patterns over the others

Ture	(Posterior probability per learning		
Туре	Caregiver input (#)	1		30
Canonical active transitive	1,757	0.454	0.550	0.588
Scrambled active transitive	51	0.005	0.002	< 0.001
Canonical suffixal passive	2	< 0.001	< 0.001	< 0.001
Scrambled suffixal passive	1	< 0.001	< 0.001	< 0.001
# mirrored distributional nature of child production (cf. Shin, 2020)				f. Shin, 2020)

\rightarrow Inhibitory effects on the growth of the related patterns

Туре)	Caregiver input (#)	Posterior probability per learning		
		1	5	30
Canonical active transitive, no ACC	268	0.024	0.008	0.002
Canonical active transitive, no NOM	19	0.002	0.001	< 0.001
Active transitive, actor-NOM only	935	0.083	0.028	0.005
Active transitive, undergoer-ACC only	1,938	0.351	0.355	0.357
Suffixal passive, undergoer-NOM only	407	0.036	0.012	0.002
Suffixal passive, actor-DAT only	13	0.001	< 0.001	< 0.001

* The other patterns converged upon zero probability immediately after the 1st learning

· Inconsistency between simulation and child production

Туре	Caregiver input (#)	Child production (#)	Posterior probability (30 th)
Active transitive, actor-NOM only	935	21	0.005
Canonical active transitive, no ACC	268	14	0.002
Suffixal passive, undergoer-NOM only	407	9	0.002

NOM-related patterns

Possible reasons

- Influences of case-marking (i.e., NOM is used exclusively as an indicator of the actor in transitive patterns: cf. Shin, 2020)
- Non-transitive partial utterances (with various noun-marker combinations) not considered in the current simulation
- Lexical items tied to specific constructional patterns in children's utterances

Together. our findings...

- ✓ support the idea that clause-level constructional knowledge grows through an interplay between input properties and domain-general learning capacities
- adds to cross-linguistic evidence for the effectiveness of Bayesian modelling on representing human learning

REFERENCES

Alishahi, A., & Stevenson, S. (2008). A computational model of early argument structure acquisition. Cognitive Science, 32(5), 789-834

- Barak, L. Goldberg, A. E., & Stevenson, S. (2016). Comparing computational cognitive models of generalization in a language acquisition task. In J. Su, K. Duh & X. Carreras (Eds.), Proceedings of the 2016 conference on Empirical Methods in Natural Language Processing (pp. 96–106). Association for Computational Linguistics.
- Goldberg, A.E. (2019). Explain me this: Creativity, competition, and the partial productivity of constructions. Princeton, NJ: Princeton University

MacWhinney, B. (2000). The CHILDES project: Tools for analyzing talk (3rd edition), Mahwah, NJ: Lawrence Erlbaum. Perfors, A., Tenerbaum, J. B., & Regier, T. (2011). The learnability of abstract syntactic principles. Cognition, 17(8(3), 306–338. Shin, G-H. (2020). Connecting input to comprehension: First language acquisition of active transitives and suffixial passives by Korean-speaking.

preschool children. Unpublished doctoral dissertation. University of Hawaii at Manoa.

Schr. H. M. (1999). The Korean language: Cambridge University Press. Tomaselo, M. (2003). Constructing a language: Auseque acade theory of language acquisition. Cambridge, MA: Harvard University Press. For J. (2015). Passives: In L. Brown & J. Yeon (Eds.), *The handbock of Korean Inguist*ics (pp. 116–136). Oxford: John Wiley & Sons.